185 research outputs found

    Equivelar and d-Covered Triangulations of Surfaces. I

    Full text link
    We survey basic properties and bounds for qq-equivelar and dd-covered triangulations of closed surfaces. Included in the survey is a list of the known sources for qq-equivelar and dd-covered triangulations. We identify all orientable and non-orientable surfaces MM of Euler characteristic 0>χ(M)≄−2300>\chi(M)\geq -230 which admit non-neighborly qq-equivelar triangulations with equality in the upper bound q≀⌊12(5+49−24χ(M))⌋q\leq\Bigl\lfloor\tfrac{1}{2}(5+\sqrt{49-24\chi (M)})\Bigl\rfloor. These examples give rise to dd-covered triangulations with equality in the upper bound d≀2⌊12(5+49−24χ(M))⌋d\leq2\Bigl\lfloor\tfrac{1}{2}(5+\sqrt{49-24\chi (M)})\Bigl\rfloor. A generalization of Ringel's cyclic 7mod127{\rm mod}12 series of neighborly orientable triangulations to a two-parameter family of cyclic orientable triangulations Rk,nR_{k,n}, k≄0k\geq 0, n≄7+12kn\geq 7+12k, is the main result of this paper. In particular, the two infinite subseries Rk,7+12k+1R_{k,7+12k+1} and Rk,7+12k+2R_{k,7+12k+2}, k≄1k\geq 1, provide non-neighborly examples with equality for the upper bound for qq as well as derived examples with equality for the upper bound for dd.Comment: 21 pages, 4 figure

    Introducing TAXI: a Transportable Array for eXtremely large area Instrumentation studies

    Full text link
    A common challenge in many experiments in high-energy astroparticle physics is the need for sparse instrumentation in areas of 100 km2 and above, often in remote and harsh environments. All these arrays have similar requirements for read-out and communication, power generation and distribution, and synchronization. Within the TAXI project we are developing a transportable, modular four-station test-array that allows us to study different approaches to solve the aforementioned problems in the laboratory and in the field. Well-defined interfaces will provide easy interchange of the components to be tested and easy transport and setup will allow in-situ testing at different sites. Every station consists of three well-understood 1 m2 scintillation detectors with nanosecond time resolution, which provide an air shower trigger. An additional sensor, currently a radio antenna for air shower detection in the 100 MHz band, is connected for testing and calibration purposes. We introduce the TAXI project and report the status and performance of the first TAXI station deployed at the Zeuthen site of DESY.Comment: 4 pages, 3 figures, presented at ARENA 2014, Annapolis, MD, June 201

    Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    Full text link
    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x 10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded.Comment: Submitted to Physical Review Letter

    Search for Point Sources of High Energy Neutrinos with AMANDA

    Get PDF
    This paper describes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes, used for the detection of Cherenkov light from upward traveling neutrino-induced muons, buried deep in ice at the South Pole. The absolute pointing accuracy and angular resolution were studied by using coincident events between the AMANDA detector and two independent telescopes on the surface, the GASP air Cherenkov telescope and the SPASE extensive air shower array. Using data collected from April to October of 1997 (130.1 days of livetime), a general survey of the northern hemisphere revealed no statistically significant excess of events from any direction. The sensitivity for a flux of muon neutrinos is based on the effective detection area for through-going muons. Averaged over the Northern sky, the effective detection area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the predicted performance of the detector. For a source with a differential energy spectrum proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.

    Muon Track Reconstruction and Data Selection Techniques in AMANDA

    Full text link
    The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st

    Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    Full text link
    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table

    IceCube - the next generation neutrino telescope at the South Pole

    Get PDF
    IceCube is a large neutrino telescope of the next generation to be constructed in the Antarctic Ice Sheet near the South Pole. We present the conceptual design and the sensitivity of the IceCube detector to predicted fluxes of neutrinos, both atmospheric and extra-terrestrial. A complete simulation of the detector design has been used to study the detector's capability to search for neutrinos from sources such as active galaxies, and gamma-ray bursts.Comment: 8 pages, to be published with the proceedings of the XXth International Conference on Neutrino Physics and Astrophysics, Munich 200

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
    • 

    corecore